
ECE4310: Programming for Robotics, Project 1
Technical Report

Project 1: Service Robot Auto-delivery with AR-tags

1st Zixing JIANG
School of Science and Engineering

the Chinese University of Hong Kong, Shenzhen
119010130@link.cuhk.edu.cn

Abstract—This text is a technical report of ECE4310 Project
1. In this project, students are asked to implement a navigation
program on a service robot to perform automatic delivery. The
robot is visually guided by several AR-tags. The whole exper-
imental setup is implemented on ROS with Gazebo simulation
environment. The project handout and material are available at
this link.

Index Terms—Service Robot, Navigation, AR-tags, ROS,
Gazebo

I. INTRODUCTION

In this project, students are asked to program a service robot
to perform an auto-delivery task in a simulation environment
shown in Fig. 1. There are several AR-tags in the environment.
These AR-tags are the robot’s delivery destinations. The robot
is asked to follow all the AR-tags in the room by a specific
order, which is encoded by the id of these tags. As shown
in Fig. 2, the id (from 0 to 7) of a tag denotes the spatial
relative direction of next tags respect to current tag. The
robot is born with a initial tag. The robot is asked to search
all the tags in the room by order according to the encoded
directional information. The id of the last tag is 8, which
denotes termination.

This report is organized as follows. In section II, I will
introduce the overall architecture of the algorithm and details
of each modules. In section III, I will give some instructions
and comments on how to reproduce the project and run
my code and go through some demos, and in section IV,
I will discuss the feature and further improvement of my
implementation.

II. NAVIGATION ALGORITHM

The whole robot navigation algorithm can be divided into
three level. From high to low they are: perception, planning,
and actuation.

A. Perception

To perform the auto-delivery task, the robot must sense the
environment it locates. For example, the robot uses laser to
detect the obstacles in the environment. What I want emphasis
in this part is AR-tag recognition and robot coordinate frame
transform. The former tells us the destination and the later
help us calculate a path to follow. These two values act as

Fig. 1. Gazebo simulation environment for the auto-delivery task. The service
robot is highlighted by the yellow circle. Coordinate frame of this simulation
is illustrated in the figure, where the z axis points to the ground. The origin
of this environment locates at the center of the green rectangle.

(a) Encoded directional information
via tag id

(b) The initial tag with id = 4

Fig. 2. Encoded directional information in the AR-tag.

input of the subsequent planning module. Without them, the
system won’t work.

1) AR Marker: The AR-tag in the environment is rec-
ognized by the depth camera equipped on the robot. The
camera publish the recognition result on ROS with a frequency.
In my implementation, a subscriber is assigned to the topic
”/ar pose marker” to listen the to data. The listened data
with ”AlvarMarker” data structure consists of the id and pose
respect to the virtual camera link. A callback function ”up-
date markers detected” is used to handle this data, as shown
below. This callback function will store all the necessary

https://bb.cuhk.edu.cn/webapps/blackboard/content/listContent.jsp?course_id=_6844_1&content_id=_260591_1


information of a tag (id, pose) in to a dictionary named
”detected markers”. This dictionary will be updated every
time the AR-tags information is updated, i.e. the callback is
called.

1 # perception: camera and AR tag
2 self.camera = rospy.Subscriber("/ar_pose_marker",

AlvarMarkers, self.update_markers_detected)
3 self.detected_markers = {}

Listing 1. AR-tag listener

1 # acquire currently detected AR tag
2 # ---------------------------------
3 # tag, ID, pose in odom
4 def update_markers_detected(self, msg):
5 if len(msg.markers) != 0:
6 for marker in msg.markers:
7 id = marker.id
8 pose_camera = marker.pose.pose
9 pose_odom = self.camera_to_odom(marker.pose)

10 self.detected_markers[id] = pose_odom

Listing 2. AR-tag callback

The pose recognized by camera is respect to camera link.
For convenience when navigating, this pose is transformed
from camera link to odom. This transformation is performed
by ”camera to odom”, as shown below.

1 # transfer tag’s position from virtual_camera_link
to odom

2 def camera_to_odom(self, pose_camera_link):
3 tf_buffer = tf2_ros.Buffer(rospy.Duration(1200.0))
4 tf_listener = tf2_ros.TransformListener(tf_buffer)
5 transform = tf_buffer.lookup_transform(
6 "odom",
7 "virtual_camera_link",
8 rospy.Time(0),
9 rospy.Duration(1.0)

10 )
11 pose_camera_link.pose.position.y = -

pose_camera_link.pose.position.y
12 pose_camera_link.pose.position.x -= 1.5
13 pose_odom = tf2_geometry_msgs.do_transform_pose(

pose_camera_link, transform)
14 return pose_odom.pose

Listing 3. Transform between camera link and odom

Since the image frame and camera frame is opposite,
before the transformation, the y-directional pose in camera
link should change sign. What’s more, to avoid collision when
navigating, the x-directional pose in camera link is minus by
1.5 m.

2) Robot Pose: The robot’s pose in odom link is subscribed
from the Gazebo simulator, as shown below.

1 # perception: robot’s current pose
2 self.pose_reader = rospy.Subscriber("/gazebo/

model_states", ModelStates, self.
update_robot_pose)

3 self.robot_pose_x = None
4 self.robot_pose_y = None
5 self.robot_pose_yaw = None

Listing 4. Robot pose listener

In ROS, the orientations is described by quaternions by
default. Thus, for convenience when setting navigation goal,
the quaternions is converted to Eular angle.

1 def update_robot_pose(self, msg):
2 self.robot_pose_x = msg.pose[-1].position.x
3 self.robot_pose_y = msg.pose[-1].position.y
4 _, _, self.robot_pose_yaw = euler_from_quaternion([

msg.pose[-1].orientation.x, msg.pose[-1].
orientation.y, msg.pose[-1].orientation.z, msg.
pose[-1].orientation.w])

5 pass

Listing 5. Robot pose callback and Quaternions-Eular angle convertion

B. Planning
The responsibility of planning unit is to compute a naviga-

tion goal based on current robot state and the perception data
feed. For certain tag in process, there are two possible states
navigate to this tag or search from this tag. Based on this, a
logic flow can be drawn as shown in Fig. 3. Based on the flow
chart, pseudocode can be derived.

Algorithm 1 Planning
if is tag in process = Null then

pick a not delivered tag
end if
if is tag in process delivered then

if tag in process = 8 then
Finished
return

end if
for detected tag that != tag in process and tag does not
delivered do

if directional condition statisfied then
set tag as new tag in process
return

end if
end for
compute goal based on directional condition
return

else
set goal as this tag’s pose

end if

For more information about implementation, please refer to
the source code.

C. Actuation
Move base is selected as the navigator of this algorithm, as

shown below.
1 # actuation: navigate through move_base
2 self.navigator = actionlib.SimpleActionClient("

move_base", MoveBaseAction)
3 rospy.loginfo("Waiting for move_base action server

...")
4 self.navigator.wait_for_server(rospy.Duration(60))
5 rospy.loginfo("Connected to move base server")

Listing 6. Navigator

Since we convert quaternions to Eular angles in percep-
tion, the actuation function takes in x-directional position, y-
directional position, and yaw angle as input. After target goal
set, the Eular angle will be converted back to quaternions and
feed in to move base, as shown below.



Fig. 3. Logic flow of planning

Fig. 4. Gmapping

1 # move to the planned goal
2 # ------------------------
3 def move(self, target_x, target_y, target_yaw):
4 global goal
5 goal = MoveBaseGoal()
6 goal.target_pose.header.frame_id = "odom"
7 goal.target_pose.header.stamp = rospy.Time.now()
8 p = Point(target_x, target_y, 0.0)
9 q_angle = quaternion_from_euler(0, 0, target_yaw,

axes=’sxyz’)
10 q = Quaternion(*q_angle)
11 goal.target_pose.pose = Pose(p, q)
12 self.navigator.send_goal(goal)
13 wait = self.navigator.wait_for_result()
14 if not wait:
15 rospy.logerr("Action server not available!")
16 rospy.signal_shutdown("Action server not available

!")
17 else:
18 return self.navigator.get_result()

Listing 7. Move base

For convenience when publishing goal, a global map of
the simulation environment is established by Grid-mapping
algorithm, as shown in Fig 4.

The planning-actuation pair executes repeated in the main
control loop.

III. DEMONSTRATION

To reproduce the project from the submitted source file,
please follow these instructions:

Fig. 5. Auto Delivery

1) Go to and build the workspace
1 cd P_roject1 && catkin_make

2) Start Gazebo simulation
1 . scripts/gazebo.bash

3) Start virtual camera
1 . scripts/camera.bash

4) Start navigation stack
1 . scripts/camera.bash

5) run auto-deliver
1 . scripts/deliver.bash

If successful, you will the interface shown in Fig. 5. You
may access this link to see a video demo. This program is
expected to run for about 10 minutes.

IV. DISCUSSION

In conclusion, in this project, an auto delivery algorithm is
implemented. The running results shows the algorithm works
well. However, there is still something can be improved. First,
the algorithm subscribe robot’s pose from gazebo. However,
for real application, this information may not available and
we have to apply position estimation. Second, for the encoded
directional information calculation, it’s highly related to the
layout of the environment. If the environment changes, the
algorithm may fail.

https://cowtransfer.com/s/72f92796b85148

	Introduction
	Navigation Algorithm
	Perception
	AR Marker
	Robot Pose

	Planning
	Actuation

	Demonstration
	Discussion

