ECE4310: Programming for Robotics, Project 2
Technical Report

Project 2: Warehouse Robot

Zixing JIANG
School of Science and Engineering
The Chinese University of Hong Kong, Shenzhen
119010130@1link.cuhk.edu.cn

Abstract—This text is a technical report of ECE4310 Project
2. In this project, students are asked to implement an intelligent
sorting program on a manipulator to perform automatic block-
sorting. The manipulator is visually guided by a camera mounted
co-axially with the end-effector. The algorithm is deployed on an
Interbotix 6-DoF robotic manipulator. Test results shown that
the algorithm can perform accurate 3-block sorting within 30s.
The project handout and material are available at this link, and
a video demonstration is available at this link.

Index Terms—Warehouse Robot, Manipulator, Sorting, ROS

I. INTRODUCTION

In this project, students are asked to program a 6-DoF
robotic manipulator with a camera mounted co-axially with the
end-effector to perform an auto-sorting task. An illustration of
the task set-up is shown in Fig. 1. There are three different
colored blocks (red, green, and blue) placed in front of the
manipulator. And there are three different colored bins (red,
green, and blue) placed on the right of the manipulator. The
manipulator is required to grasp the blocks and place them in
the bins with same color.

This report is organized as follows. Section II introduces
robotic perception involved in this project, including object
detection and eye-in-hand calibration. Section III explains how
the sorting program is implemented, including overall sorting
logic, actuation, and obstacle avoidance. Section IV addresses
some efforts the author made to improve sorting accuracy and
speed. Section V provides a demonstration of a sorting task.
Section VI leaves some instructions on reproduce this project
and lists some supplementary information.

II. PERCEPTION

A. Object Detection

1

Object detection is implemented based on HSV-color de- °
tection. Objects are highlighted from the image feed by HSV- j
masks. In this project, the range of S-value and V-value is fixed s
(S € [70,255], V € [60,250]), the range of H-value varies ’
based on objects’ colors. The value of H is measured with |

the “para_test” tool provided according to the instructions i

Fig. 1.
manipulator is required to recognize different colored blocks in front of it,
grasp and place them in the corresponding colored bins. The entire process
should be performed fully automatically.

A illustration of the intelligent sorting task. The 6-DoF robotic

in project handout section 1.3 “Visual recognition parameter
adjustment”. The measured H-value range is:

Red : 0 ~ 30
Green : 80 ~ 120
Blue : 230 ~ 360

The measuring process is illustrated in Fig. 2.
These parameters are filled into the configuration file
“src_object_color_detector/config/vision_config.yaml”. When
the parameters are set, object detection can be done by
requesting the ROS service “/object_detect”. This service
will return a data structure named “DetectObjectSrv”’, which
contains four attributes: result, redObjList, greenObjList,
blueObjList, and blackObjList. The last four are lists that
store the poses of the corresponding color objects in the
camera frame. An example is presented in Listing 1.

result: 0O

redObjList: # list of detected red objects
position:
x: 254.0
y: 365.0
z: 0.0
orientation:
x: 0.0
y: 0.0

https://bb.cuhk.edu.cn/bbcswebdav/pid-265148-dt-content-rid-4158593_1/courses/ECE431021203530/Project2%20-%20Warehouse%20Robot.pdf
https://cowtransfer.com/s/276eb77aa3f94e

11

12
13
14 blueObjList: []

(a) Red: himaz = 30, hypin =0

(b) Green: hypaz = 120, hypin = 80

(c) Blue: hmaz = 360, hpin = 230

Fig. 2. Measure HSV parameters

z: 0.0
w: 0.0
greenObjList: [] # list of detected green objects

list of detected blue objects

blackObjList: [] # list of detected black objects

Listing 1. An illustration of the returned data structure. In this example, the
algorithm detects one red object.

B. Eye-in-hand Calibration

The calibration process is performed according to project
handout, section 1.4 “Robotic arm eye-in-hand calibration”.
The purpose of eye-in-hand calibration is to find a mapping
between coordinate of pixel in camera frame and coordinate
of manipulator end-effector in world frame. In this project,
we only consider the 2D XoY calibration, and the mapping
is found by linear regression. The regression problem is
formulated as follows. Suppose the coordinates of target object
in world frame are z,, and y,,, the coordinate of target object
in camera frame are z. and y.. By linear mapping, we have

v
Yuw Tc

The reason why the x and y axis in these two frames are
upside-down is that their coordinates are upside-down. In this
project, these coefficients are solved by taking 5 samples. The

[0.00035]

results are!
Kk = k1 =
ko —0.00041

b _ [01] _ [0.30600
= |bo| T |0.09525

These four coefficients are encapsulated as class attributes
in the sorting program.

III. SORTING

A. Sorting Logic

The logic of sorting is described in Fig. 3. In each iteration,
the manipulator first go to the calibration pose and request
object detection. Once the pose of the target object in image
frame in acquired, the manipulator will compute its pose in
world frame according to eye-in-hand calibration results. Then,
the end-effector of the manipulator will go to this pose, grasp
the object, and then place it in the corresponding bin. This

IThe serial number of the calibrated manipulator is NXWI12022010507

Go to calibration
pose

Request object
detection
Pick one detected
object
Place it to
coresponding bin

Start

Sorting
completed?

Fig. 3. Flow chart of the sorting logic. The manipulator performs detect-
grasp-place loops until sorting completion.

detect-grasp-place loop is performed in each iteration until the
sorting task is completed. How this logic is designed will be
introduced in Section IV. Optimization.

B. Actuation

Both pose-only kinematics and Cartesian path planing are
deployed. The following lists some important poses than
the actuation methods to achieve them. For more code-level
information like called API, please refer to the co-submitted
source code.

1) Calibration pose: The calibration pose is reached by
simple pose-only kinematics. The coordinates of this pose are:

position.x = 0.15

position.y =0

position.z = 0.3
orientation.xz = 0
orientation.y = -

orientation.z = 0

orientation.w =

ol

2) grasping pose: Since grasping required high accuracy,
the simple pose-only kinematics may not apply because it may
cause undesired path and collision. Therefore, Cartesian path
planing is deployed for reaching grasping pose. Waypoints for
path planing are calibration pose (start) and detected object
pose in world frame (end). The vertical displacement is set as
-55 cm.

3) Placing pose: Same with calibration pose, the placing
poses is reached by pose-only kinematics. The poses of these
three bins are given by manipulator 6-axis representation.

1.713456630706787
—0.3911651074886322
—0.3942330777645111

—0.13038836419582367
—1.6030099391937256
1.7103886604309082

[2.1460392475128174 |
—0.23623304069042206
—0.32827189564704895
—0.11044661700725555

—1.5830682516098022
2.144505262374878

[1.26553416252136231 |
—0.36048549413681032
—0.34361171722412113
—0.12578642368316658
—1.58767020702362066
| 1.25633025169372569 |

Red bin =

Blue bin =

Green bin =

These 6-axis values are measured as follows. First, drag the
manipulator to desired pose by Rviz visual control, then read
the 6-axis data by reading ROS topic “/wx250s/joint_states”.

4) Gripper operation: To achieve fast and accurate gripper
operation including open and close, this project bypassed
Movelt! APIL Instead, it publishes Float64-type message to
ROS topic “/ws250s/gripper/command” directly. For close
operation, the sent message.data is -0.015. For open operation,
the sent message.data is -0.02.

C. Obstacle Avoidance

To avoid collision, obstacle avoidance is implemented. The
table, bins, and blocks are all set as obstacles, as shown in Fig.
4. When grasping blocks, the corresponding block-obstacle
will be deleted, in case of planning failure.

IV. OPTIMIZATION

This section introduce the effect this project made to im-
prove the sorting performance, including sorting accuracy and
sorting speed.

A. Sorting Accuracy

Collision may occurs, resulting in displacement of the target
object and inaccurate grasping. This project requests the object
detection service before each grasping to update the target
location to improve the accuracy.

(a) Table, bins, and blocks set as obstacles (3 block-obstacles on the
table)

(b) Delete target block-obstacle when grasping (2 block-obstacles on
the table)

Fig. 4. Obstacle Avoidance

B. Sorting Speed

In this project, some tricks are utilized to improve the
sorting speed without reducing the sorting accuracy.

1) Don’t update obstacle location: Refer to section IV.A,
intuitively speaking, after update object location, obstacle
location should be updated as well. The obstacle update costs
time. Tests revealed that the displacement of target is normally
not large. Hence, to reduce time cost, this process is neglected.

2) Don’t attach obstacle to end-effector: Intuitively speak-
ing, when the manipulator grasp object successfully, an ob-
stacle should be attached to the end-effector for obstacle
avoidance consideration. Given obstacle update in Rviz costs
time, this project neglects this process. As compensation,
the height of the end-effector is lowered during gripping to
minimize the effect of the gripped object on the shape of the
manipulator.

V. DEMONSTRATION
Sequential view of an intelligent sorting demonstration is
shown in Fig. 5. For more information, please check the video
demo.
VI. APPENDIX
A. How to run my code
1) Go to and build the workspace.

I cd interbotix_ws && catkin_make

=RV R S

(a) Manipulator detects red blocks (b) Manipulator grasps red blocks (c) Manipulator places red blocks

(d) Manipulator detects blue blocks (e) Manipulator grasps blue blocks (f) Manipulator places blue blocks

(g) Manipulator detects green blocks (h) Manipulator grasps green blocks (i) Manipulator places green blocks

Fig. 5. Sequential view of an intelligent sorting demonstration.

2) Start the robotic manipulator with provided bash script.

I . real/environment.bash
3) Start the camera with provided bash script.

| . real/camera.bash

4) Start the sorting program with provided bash script.

I . real/sort.bash

B. Where is the core source file

The core source file of this project locates in inter-

botix_ws/src/interbotix_demos/src/sort.py.

C. ROS node involved

ROS nodes involved in this project is listed in Listing 2.

/intelligent_sort # the node to perform the auto-
sorting task

/object_detector # the node providing the object
detection service

/rosout # the ROS master

/wx250s/arm_node # the robotic arm

/wx250s/move_group # the moveit move group

/wx250s/robot_state_publisher # robot arm state
publisher

/wx250s/rviz_ubuntu_6880_5747233684899934003 # rviz

parameter server

Listing 2. ROS nodes involved in this project.

	Introduction
	Perception
	Object Detection
	Eye-in-hand Calibration

	Sorting
	Sorting Logic
	Actuation
	Calibration pose
	grasping pose
	Placing pose
	Gripper operation

	Obstacle Avoidance

	Optimization
	Sorting Accuracy
	Sorting Speed
	Don't update obstacle location
	Don't attach obstacle to end-effector

	Demonstration
	Appendix
	How to run my code
	Where is the core source file
	ROS node involved

